Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

نویسندگان

  • Jie Tao
  • Jian Shi
  • Li Yan
  • Ying Chen
  • Yan Hong Duan
  • Pin Ye
  • Qi Feng
  • Jian Wei Zhang
  • Xue Qin Shu
  • Yong Hua Ji
چکیده

BACKGROUND BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Martentoxin: a unique ligand of BK channels.

The large-conductance calcium-activated potassium (BK) channels distributed in both excitable and non-excitable cells are key participants in a variety of physiological functions. By employing numerous high-affinity natural toxins originated from scorpion venoms the pharmacological and structural characteristics of these channels tend to be approached. A 37-residue short-chain peptide, named as...

متن کامل

Recombinant Expression and Functional Characterization of Martentoxin: A Selective Inhibitor for BK Channel (α + β4)

Martentoxin (MarTX), a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch), was capable of blocking large-conductance Ca2+-activated K+ (BK) channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cl...

متن کامل

Bisphenol A activates BK channels through effects on α and β1 subunits

We demonstrated previously that BK (K(Ca)1.1) channel activity (NP(o)) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BP...

متن کامل

Western blot analysis of BK channel β1‐subunit expression should be interpreted cautiously when using commercially available antibodies

Large conductance Ca(2+)-activated K(+) (BK) channels consist of pore-forming α- and accessory β-subunits. There are four β-subunit subtypes (β1-β4), BK β1-subunit is specific for smooth muscle cells (SMC). Reduced BK β1-subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1-subunit reduces channel activity and increases SMC cont...

متن کامل

Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011